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A general formalism for non-neutral cold relativistic planar steady flows is developed and
applied to the study of the equilibrium of a sheet electron beam in a planar wiggler free
electron laser. The full transverse dependence of the wiggler field as well as the equilibrium
self-fields of the beam are included. In particular, the betatron oscillations in the presence of
self-fields are studied. For a thick beam equilibrium with a particular density profile it is shown
that the betatron oscillations are eliminated. For a thin beam configuration the paraxial
approximation is employed and it is also shown that for some critical density there are no
betatron oscillations. If the density is larger than this critical density the beam oscillates with
the betatron frequency but there are no trajectory crossings and the beam preserves its cold
fluid nature. The single-particle equations of motion are also considered in the presence of both
planar wiggler and planar self-fields. It is shown that in some cases the particles oscillate with a
reduced betatron frequency, in contrast to the previous case of cold fluid motion where the
self-fields do not change the betatron frequency. For the study of the betatron oscillations in
the thick beam equilibrium a two-space scale method is employed. For the thin beam within
the paraxial approximation the Floquet theory for equations with periodic coefficients is used.

I. INTRODUCTION

Free electron lasers (FEL’s) are a subject of intensive
theoretical and experimental study.! In some experiments a
planar wiggler is employed to force the electron beam into
the wiggling orbit necessary for the FEL interaction.” Theo-
retical treatments of FEL’s that employ planar wigglers
sometimes neglect the transverse dependence of the wig-
glers.> Such an approximation fails for long interaction
length FEL’s because of the betatron oscillations. These os-
cillations, with a wavelength much longer than the wiggler
wavelength, may introduce thermal spread into the beam,
cause the beam envelope to oscillate, and change the beam
density substantially over a betatron wavelength. One ap-
proach in addressing the betatron oscillations is to assume
that the beam momentum spread and the beam initial radius
are such that the beam envelope does not vary.® In that case
the equilibrium density of the beam is assumed to be con-
stant. The betatron oscillations and the transverse gradients
are then modeled one-dimensionally with the introduction
of an effective temperature of the beam. A second approach
is to assume that the beam envelope oscillates with some
small amplitude at the betatron oscillation wavelength.”
That picture of the beam does not describe explicitly the
equilibrium and the betatron oscillation is expressed by
means of the varying envelope.

It is difficult to compress a high current beam into a
small cross section. For a high quality finite cross-section
beam, the thermal spread of the beam could be insignificant
in determining the beam dynamics. Instead, the equilibrium
self-fields of the beam could play a major role. To explore the
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validity of that view, we emphasize in this paper a cold fluid
model, which incorporates the equilibrium self-fields of the
beam. The solutions of the cold fluid equations may have
singularities coming from the crossings of streamlines,
equivalent to the well-known crossings of single-particle tra-
jectories. At these singular points the cold fluid model
breaks down. We explore regimes where the cold fluid model
admits regular solutions. Such solutions describe equilibria
with no trajectory crossings, and they may be important for
FEL applications. The singularities that could be present
have been eliminated by the presence of the self-fields, which
act to oppose the restoring force of the wiggler field.

Since for some cases crossing of streamlines occurs, we
also examine the single-particle equations of motion in the
presence of given self-fields. We derive the constants of the
motion and demonstrate some of the effects of the self-fields.
This formulation of the single-particle equations of motion
could be the basis for a kinetic model of equilibria when
crossings of trajectories occur.

Because the wiggler is planar we study an electron beam
of the same structure, a rectangular or a sheet electron beam.
Parenthetically, one should bear in mind that, because of the
betatron oscillations, an electron beam, which is initially cy-
lindrical, takes an elongated form as it propagates; a sheet
beam, on the other hand, preserves its rectangular shape
even though its thickness may vary. The electron beam is
assumed to propagate in the z direction and to be infinite in
extent in the x direction, the direction perpendicular to both
the wiggler field and the transverse gradient of the wiggler
field. This idealization is possible practically because the
planar wiggler has a weak x dependence. The experimental
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use of wide sheet beams enables one to increase the current
by increasing the beam cross section in the x direction. The
model problem we study is finally a two-dimensional prob-
lem in which all the quantities are independent of x and
depend on y and z only.

We start by formulating in Sec. II the general cold fluid
equations for steady planar relativistic non-neutral flows.
Similarly to our previous study of helically symmetric
flows,® we replace the equations for the fields and for the
fluid moments by equations for three scalar functions: a
magnetic flux function, a fluid stream function, and an elec-
trostatic potential. The reduction in the number of unknown
functions simplifies the equations, clarifies what boundary
conditions have to be specified, and makes it easier to derive
approximate solutions by asymptotic expansions. The equa-
tions allow general two-dimensional electric and magnetic
fields and include the full effects of the steady self-fields of
the beam. Also in Sec. II we describe the single-particle mo-
tion in static electric and magnetic fields independent of x by
writing Hamilton’s equations for the system.

The general formalism of Sec. II is applied in Sec. III for
a situation common in FEL’s, in which the beam is thin in
the y direction. We apply the paraxial approximation to both
the cold fluid system and to the single-particle motion. The
cold fluid equations are reduced to an inhomogeneous sec-
ond-order, linear ordinary differential equation in z for the
reciprocal of the density. The coefficients in the equation are
given in terms of the applied axial electric and magnetic
fields. The inhomogeneous term in the equation comes from
the self-fields of the beam. When we assume an external,
periodic, planar wiggler, the equation has periodic coeffi-
cients. Applying the Floquet theory we look for periodic
solutions with the wiggler periodicity and with no betatron
motion, and for almost periodic solutions with the additional
periodicity of the betatron motion. We also examine the con-
ditions under which the solution has zeros, which corre-
spond to crossings of trajectories and to the breakdown of
the fluid model. We show that there is a critical density for
which the betatron oscillations are eliminated, and the solu-
tion is periodic with neither secular nor almost periodic
terms. If the density is higher than this critical density the
beam then oscillates with the wiggler periodicity and also
with the betatron periodicity around a new equilibrium
plane. In this case there are no crossings of trajectories and
the cold fluid picture remains valid. When the density is
lower, crossings occur and the cold fluid model fails. By
applying the paraxial approximation to the single-particle
equations of motion we derive a homogeneous second-order
equation. We write the constants of the motion in the com-
bined wiggler field and self-fields. These constants of motion
could become the basis of a kinetic model. We show that the
periodicity of the motion of a particle is modified in the pres-
ence of z-independent self-fields. We note the remarkable
difference between this motion with a reduced betatron fre-
quency and the cold fluid solution in the presence of self-
fields for which the betatron frequency is not modified.
These are clearly two different equilibria, which will prob-
ably result in different FEL interactions.

In Sec. IV we return to the general equations with the
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full transverse dependence. Rather than employing the par-
axial approximation we expand the equations in a small pa-
rameter that measures the ratio of the perpendicular to par-
allel momenta. We use a two-space-scale method and show
that for a beam of a given energy propagating along a planar
wiggler there are density profiles for which the self-fields
balance the wiggler focusing and the betatron oscillations
are eliminated. For densities near that critical density profile
we show that betatron oscillations are present, that their
wavelength varies across the profile, that no crossings occur,
and that the cold fluid model remains valid.

Il. THE COLD FLUID PLANAR STEADY FLOW MODEL

We consider the steady flow of zero-temperature elec-
trons in which all quantities depend on the y and z rectangu-
lar coordinates only. We take the flow to be essentially in the
zdirection, with y as the coordinate of spatial extent, and x to
be an ignorable coordinate. With appropriate nondimen-
sionalization of the reduced momentum u, the density », the
electric field E, and the magnetic field B, the cold fluid mod-
el reduces to conservation of mass

Ve(nu) =0, (n
conservation of momentum

(u'V)u= —yE—uxB, (2)
where

P=1+u? (3)
and Maxwell’s equations

VXE=0, 4)

V-E= —ny, (5)

V-B=0, (6)

VXB = — nu. (&h)]

For steady flows that are independent of x we may intro-
duce a magnetic flux function ¢(y,z) such that

B, = -4, (8a)

Bz = ¢,y’ (8b)
and an electrostatic potential ¢(p,z) such that

E= — V. 9)

It is also possible to introduce a streamfunction y(y,z) such
that

nu,= —x.,, (10)
nu,=y,, (11)

and (1), (4), and (6) are satisfied identically. It then follows
from (7) that

B, =x(»2), (12)
and

AYp= —nu,, (13)
while Poisson’s equation (5) has the usual form

Ad = ny. (14)

With the definitions and equations [ (8)—(14)], all the equa-
tions of the system (1)—(7) are satisfied except (2) and the
definition (3).
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When we dot u into (2) we obtain the usual form of
conservation of energy,

(wV)(y—¢) =0,

so that we may introduce an arbitrary function of y, E(y),
such that

y=E(x) +¢(»2).

In addition, the x component of (2) yields
(wV) (u, +¢) =0,

so that we may introduce another function F(y) such that
u, =Fy)—¢. (16)

When we combine (10), (11), (15), and (16) we obtain an
explicit expression for n,

n(y2) = [Vy|/ALE() + 41> -1
—[¢—F()1PH2 (17)
The remaining component of (2) can be cast in the form
LY=x3X= — 2oXXre + XX
= —n[n(E(y) + ¢}V -Vy

(15)

—n{Y— F())V¢ Yy —xVx Yyl (18)
Maxwell’s equations assume the final form
A¢ =n(E(y) + ¢) (19)
and
AY = n(y — F(x)). (20)

Thus cold steady planar flow is characterized by the system
(17)—(20). We note in passing that this system was con-
tained in our earlier paper® on helically symmetric flows fol-
lowing a simplification and transformation. If one sets the
helical wavenumber k to zero, expresses all quantities in rec-
tangular rather than cylindrical coordinates, and then
makes a cyclic permutation of the independent variables
(x,»,2) - (»,2,x), one obtains the above results. It seems,
however, more natural to rederive them directly, rather than
rely on the simplification.

Since we intend to make some connection with single-
particle motion, it is useful to describe the associated prob-
lem of single-particle motion in static electric and magnetic
fields independent of x. It is easy to see that an appropriate
vector potential A for the magnetic field is

A=(—-1904,),
where
A4,, =x(2) =B, (yz2),
so that the Hamiltonian for the motion of an electron is

H=[14+ @, —¥)*+p:+ . +4,)*]"*—¢. (21

Since the x coordinate is ignorable, p, is constant and
u, = p, — ¢ [compare (16) ]. When we take p, as constant,
we observe that (21) gives the Hamiltonian for the two-
dimensional motion in the y-z plane and that the Hamilto-
nian is time independent. Thus the Hamiltonian is constant,
or ¥y = H 4 ¢ [compare (15)]. Now, Hamilton’s equations
are four, first-order ordinary differential equations. Since
the Hamiltonian is time independent, we may drop the order
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of the system from fourth order to second order by a simple
transformation in which we solve (23) for p, as a function of
the other variables,

p.=[H+$=1- @, -9’ -5 ~4, (2

and we take — p, as the generalized Hamitonian with conju-
gate “time” z. This transformation is clearly canonical and
the form of Hamilton’s equations is’

H = const,

@= —4 (H+ ¢)¢,y - (¢—Px)¢,y

dz 2y [(H+¢)2—‘1—(Px—¢)2"173]”2’
(23a)

dy Py

ay _ s (23b)

dz [(H+¢)2-1—(px—l//)2—P§]”2

dpz = —4 (H+ ¢)¢,z — (w—px)'ﬁ,z

dZ %% [(H+¢)2_1__(px__¢)2_p§]1/2’
(24a)

dt H+¢ (24b)

dz [(H+¢)—1— (. —$)*-p]"*
The system (22)—(24) is, of course, equivalent to the usual
treatments of single-particle motion, but it simplifies and
clarifies some of the approximations commonly made. We
compare the properties of the cold fluid and single-particle
motion when it is possible.

HI. THE PARAXIAL APPROXIMATION

We apply the paraxial approximation to our cold fluid
system and we compare the results with what we can obtain
for single-particle motion. We apply the Floquet theory of
ordinary differential equations with periodic coefficients.
When we make the usual approximations of a small applied
magnetic wiggler and no applied electric field we obtain a
series of explicit results on the appearance or nonappearance
of betatron oscillations and orbit crossings, which imply the
breakdown of the cold fluid model.

We return to our cold fluid system (17)-(20), and we
wish to expand the solution in a power series in y, where we
assume that y is small. In particular, we assume

x=ya,(z) +y'as(z) + -,
Yv=1(2) + (J’2/2)¢2(z) + -
é = do(2) + P/2)y(2) + -+,
E()()=E0+E21/2/2+ RN
F(y) =F2X2/2+ —

In (25), we have set F; = 0. We could easily assume F,#0,
or equivalently we could add this constant to #,(z) without
changing the system. Equivalently, we could also take E, to
be zero by adding a constant to ¢,(z), but since E, corre-
sponds to the particle energy, it is physically desirable to
make this constant explicit. On the other hand, F; essentially
corresponds to the mean x component of momentum, and
we expect it to be small and not physically significant. In any
case a Lorentz transformation in the x direction can modify
the mean x component of momentum as desired without
substantially affecting an x-independent solution.

(25)
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When we insert (25) into (17), (19), and (20) we find
to lowest order

n=n(z) = a,(z)/{[Eo -+ ¢0(Z)]2 -1

~ [P+ -, (26)
$:(2) = — ¢g(2) + n(2)[Ey + ¢p(2) ], 2n
(2) = — Y5 (2) + n(2)¥(2), (28)

while (18) becomes

(a,)%a; —2a,(a})? = —dlalA'/A —at/A?
+a} [ (Bo+ do)s — Yo¥i 1/A%

(29)
where
A%(2) = [Ey+ ¢0(2)]* — 1 — [¢p(2)]°. (30)
We define
b,(2) = 1/a,(2), 31

and (29) becomes, after division by [a,(z)]*/A%,

AL} +{[Eo + ¢0(2) 145 (2) — ¥o(2) 95 (2)}b,(2)
= 1/A(2). (32)

Thus the flow is given in the paraxial approximation in terms
of the solution of the linear, inhomogeneous, differential
equation for b, (z), when the electric potential and magnetic
streamfunction are given on axis. We see from the paraxial
approximation for y that the equation of a streamline, or
particle trajectory, is

y=xob:(2), (33)

where y, is a constant. Thus particle trajectories cross, and
the cold fluid approximation fails, when b,(z) vanishes. No
other trajectory crossings occur.

If we assume that ¢,(z) and ¥,(z) are given periodic
functions of z of period L = 2#/k, then (32) for b,(2) is of
typical Floquet form.' In general, we expect there to exist a
unique solution of the equation of period L. The general
solution of the equation is the sum of this solution plus a
solution of the homogeneous equation. The solutions of the
homogeneous equation can, in principle, be unbounded in z,
or they may be almost periodic functions corresponding to
the appearance of betatron oscillations. We cannot, in gen-
eral, decide whether or not b, (z) vanishes for any values of z.

We now apply the explicit Floquet theory to a particular
case of (32) that is of some general interest. We assume that
there are no applied electrostatic fields, so that ¢,(z) =0,
that the applied wiggler has the simple form ¢, = B, cos z,
and that

2e¢=Bi/(E3-1) (34)
is small. We define

5 (z) = AY(E} — 1) =1—€(1 + cos 22), (35)
and (32) becomes
8(8b]) + €(1 +cos 2z)b, = (E% — 1)73%/8. (36)

If 5 were identically constant then (36) would be an inho-
mogeneous Mathieu equation. The following results are fair-
ly standard, but we present them with succinct derivations
and reinterpret in the context of our problem.
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We consider the homogeneous equation

5 [6(2)y'] + €(1 + cos 2z)y =0. 37
For any two solutions y,(z) and y,(z),

8(2) [31(2)y; (2) — y; (2)p,(2) ] = const, (38)
so that

W(z + nr) = W(z), (39)

where n is an integer and W(z) is the Wronskian of the two
solutions or
W(z) = y,(2)y; (2) — y; (2)y,(2). (40)
We construct two fundamental solutions of (37) by the im-
position of the boundary conditions y,(0) = 5 (0) = 1 and
1 (0) =y,(0) = 0. An elementary calculation shows that
Z  1—cos2z

7(2) =1—e2(—-+ )+0(e4)

41
2 4 “h

and

y2(2)=z_62(%+ 6 4

and these solutions are uniformly valid in 0<z<#. Further, a
particular solution of (36) valid in the same interval is

B(z) = (E} — 1) {47 + €32 — 2/24

+32%cos 2z + £(1 —cos 22)] + oM}
(43)

We can now determine whether Eq. (36) has any solu-
tions periodic of period 7. The general solution of the equa-
tion is

b,(2) = B(2) + Ayi(2) + pp,(2), (44)

where A and p are arbitrary constants. The conditions for a
solution period of 7 are y(0) = y(#) and y'(0) = y'(w), or

/1=/1(1—€21T;—)+,U(7T—€2—1:—)

7),2

2 zcos2z

) +0("),  (42)

+ (B3 - 1)-3’2(7+ 0(8)), (45a)
p= —Aér+ul[l —E(@/2)
+(E2 =137+ 0(H)]. (45b)

It is easy to see that a unique solution exists, and, in particu-
lar,

A=(E; -1 [e >+ 0(1)], (46a)
p=(E-1)"¥20Q). (46b)

Since y,(z) = 1 + O(€?) on the interval 0<z< and y(z) is
periodic of period m, we conclude from (41)-(46) that y(z)
also has no zero crossings and that the cold plasma model is
uniformly valid for the periodic solution. We remind the
reader that the general Floquet theory shows that although
we calculate results by perturbation expansion, they are val-
id for all z. For this solution the density for which a periodic
solution exists is given by

n(z) = €(E§ — D1 + 0]

= (B1/2)[1 4+ 0(e)]. 47)
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In order to consider other densities we must return to (36)
and obtain the general solution.

The general solution of (36) is the solution b,(z) given
by (44) with A and p specified by (45) and (46) plus an
arbitrary solution of the homogeneous equation (37). To
examine these homogeneous solutions we return to the Flo-
quet theory. The general solution of (37) is of the form

w(z) = Ay,(2) + iy, (2), (48)

with A and /i now arbitrary. Although there may not be
solutions of period 7, we can look for solutions with Floquet
exponent ¢ such that

w(z + m) = ow(2), (49a)

wi(z+ 7)) =ow'(z). (49b)
If (49) holds then

w(z 4 nm) = oc'w(z), (50a)

w(z+ nw) =o' (z2). (50b)

Thus the solutions are bounded if jo| = 1 and tend to zero or
infinity if |o| # 1. We may calculate the exponents from the
nature of the solutions on the interval 0<z<# only. The ex-
ponents satisfy

w(m) = ow(0),

w'(m) = aw' (0),

or
Ai(m) — 0] + @y, (m) =0, (51a)
i (1) + ily; (7)) — 0] =0, (51b)
and in view of (39) and (40) we find easily that
o> — o[y (m) +yi(m)] +1=0. (52)

Thus we see that if o is a root so are 1/0, o*, and 1/0*. If
jo| = 1, then the two roots are o and o*, whileif |o| > 1, then
o is real and the two roots are ¢ and 1/0. For our problem,
(52) becomes

7 —o[2—-ér+0(e)] +1=0,
or

o=14ier + 0().
Since o is not real we conclude
o=1+ier — €m*/2 + O(e) and

o= exp{ + ier[1 + O(€*)1}. (53)
We could calculate o to higher order in ¢, but (53) suffices.
All we must know is that there is an exact Floquet exponent
o of which the right-hand side of (53) is an approximation.

We can now return to (51) and calculate the structure

of the solutions. We see that to leading order the solution
with Floquet exponent (53) is

ol =1, or

V1 (2) =3,(2) 1 ie[1 + O(€2) ]y,(2), (54)
so that
V4 (z+ nm) =exp{ L ienw[1 + O(H) 1}y, (2). (55)

We may obtain useful information from (55) even if ne is
O(1) orlarge, provided only that ne’ is small. Thus we could
easily take n~ 1/€, so that ne~ 1/¢ but ne’ ~e. The form
(55) shows that for ne near an even integer, y , (z + nm) is
approximately y . (2). If this period is incommensurable
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with 7, then this oscillation—the betatron oscillation—is an
almost periodic oscillation of period 2/€. We can extract still
more information from (55). The general solution of the
homogeneous equation is clearly

Y (2) =Re({ y,(2) + ie[1 + O(®) 1p,(2)}e™), (56)
where @ may be taken real, and
yu(z+nm) =Rel{ y,(2) +ie[1 + O() 1y,(2)}
xexp {w + enm[1 + O()1}.  (57)

Thus the solution, which is y,(z) in 0<z<, is obtained by
taking @ = 0. However, if this solution is taken to large val-
ues of z by (57) such that ne~1, then

In this range y(z + nr) vanishes near z = 0 and its magni-
tude is O(e). Extensions of this argument show that every
homogeneous solution of (37) has zeros and also that the
order of magnitude of the solution can vary from O(1) to
O(¢) and back to O(1). The order of magnitude refers to the
magnitude of y(z) on some full interval z,<z<z, + and not
just at a point at which y(z) may vanish.

We may now consider the nature of the general solution
of (36). We add to b,(z) given by (44) a constant real multi-
ple of y, (z) givenby (56). This solution is clearly no longer
periodic in z, but it is almost periodic with betatron oscilla-
tions of wavelength 2/¢. Provided yg(z)<(E3}

— 1)73/2¢=2 everywhere, the composite solution has no
Zero crossings, so that the betatron oscillations do not cause
breakdown of the cold fluid model. If y,(2)
> (E2 — 1) 73/2¢72, then the solution is essentially the ho-
mogeneous solutions and the betatron oscillations cause or-
bit crossings and breakdown of the cold fluid model. We may
reformulate the condition for a solution with betatron oscil-
lations but without orbit crossings or breakdown of the cold
fluid approximation as

n(z) >iBL.
When
n(z) <iB2,

the solution is essentially a homogeneous solution with beta-
tron oscillations, orbit crossings, and breakdown of ihe cold
fluid approximation. Even though the cold plasma solution
may fail after many wiggler periods, it remains valid for as
many wiggler periods as do occur before orbit crossing. In
dimensional variables the condition is

w?/y2i[eB,/(mc)]? = 1(Q.)%

where w, and (), are the plasma frequency and cyclotron
frequency in the laboratory frame of the electron fluid.

We observe that the wavelength of the betatron oscilla-
tions, 277/¢, is independent of the density. We can present a
simple physical explanation of this phenomenon based on
the different roles of the wiggler field and of the self-fields of
the beam. The wiggler field exerts a restoring force on the
particles that is proportional to y and thus acts like the re-
storing force of a spring. The self-fields, on the other hand,
exert a transverse force that is constant along streamlines.
The nature of the self-field forces is easily understood when
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one notices that without crossings of streamlines the current
and charge between a streamline and the axis of symmetry
are constant in z, and thus the fields generated by the current
and charge do not vary with z. Hence the particles are acted
upon by a “spring force” (the wiggler) and a constant force
(the self-fields). The constant force changes the equilibrium
plane of the oscillation, but does not change the frequency of
the oscillations. The equilibrium plane of the oscillation
moves from the plane of symmetry to two symmetric planes
on the two sides. This is in contrast to the betatron oscilla-
tions of a cylindrical beam in a helical wiggler, where the
force exerted by the self-fields is not constant.! In the fol-
lowing we will demonstrate a case where the self-fields do
modify the frequency of oscillations.

We next examine the Hamiltonian dynamics (22)-(24)
in the paraxial approximation. We assume, for convenience,
symmetry in y and we set

Bx =Az,y =J’ﬂ(2) + T
= do(2) + (V/2),(2) + '+,
v=1(2) + ¥/ (2) + -,

and we find
d d
s@a2{(s@2)
+ {A(2)8(2) — [H + ¢(2) 14,(2)
+ 9¥,(2) [¢o(2) — P, 1 }¥(2) =0, (59)
where here
A% (z) = [H—¢o(2)1* — 1 — [¥(2) —p, )% (60)

and we have assumed p, is small of order y in order to vali-
date the paraxial approximation. The system (59) and (60)
is not idential with (32) or (36), but it is generally quite
similar, and the Floquet theory applies. In the extremely low
density case we might drop the self-fields so that
B(z) = ¢y(2) = ¢,(2) =0, and we may select p, = 0. If we

take ¥(y,z) to be the vacuum flux function
¥ = B,, cosh y cos z, then
¥o(2) = 1,(2) = B, cos z, (61)

and then (59) is identical to (37) and we may describe the
single particle in terms of the earlier analysis. We note in
passing that in this very low density case we can easily char-
acterize two constants of the motion of the Hamiltonian sys-
tem. These constants are

A@) [Y (29,(2) —y(2)yi (2)] = C, (62a)

and

A@) [V (2)p,(2) — y(2)y;(2)] = C, (62b)
where y,(z) and y,(z) are the two fundamental solutions of
(37) given by (41) and (42). These constants of the motion
might be used as the basis for characterizing solutions of the
Vlasov equation. They are not the usual type of integrals of
the motion, since they involve the special functions y,(z)
and y,(z). They are, nonetheless, constant in z.

If one does not assume that the self-field effects are neg-
ligible, then it is easy to select specific forms for 8(z), ¢(2),
and ¢,(z), such that the solutions of (59) are unstable. In-
stead of executing betatron oscillations, the particles would
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diverge to infinity or converge to zero as |z| tends to infinity.
A simple example would be

$o(2) = ¢,(2) =p, =0,

¥o(2) = 9,(2) = B, cos z,

B(z) = — BZ (1 + cos®2),
for which (59) becomes

A(z)— A(z)d—y—Bﬁ,y=0. (63)
Iz dz

d

d.
It is easy to show that for B, /H small the solutions of (63)
are all unstable. Thus it is clear that at low, but moderate,
densities it is essential to include self-fields self-consistently
in order to characterize the orbits meaningfulily.

As a second example let us choose pB(z)
= N(H? - 1)"2 and ¢,(z) = NH, where again ¢, = 0 and
¥o(2) = 9,(2) = B, cos z, corresponding to the self-fields
of a beam of density N which does not vary with z. If
A%(z)=H? — 1, Eq. (59) becomes

d%y
dz?

This equation has oscillating solutions of the long space scale
with frequency w,,
w,=B2/2—N.

The frequency w, is the well-known betatron oscillation fre-
quency of a particle in the presence of a uniform magnetic
field and a perpendicular electric field linear in the space
coordinate. If N is larger than B 2 /2 the motion is unbound-
ed. We notice that a particle that moves inside an electron
beam of constant density feels a varying electric field along
its trajectory and the frequency of its oscillation is modified.
Using the same terminology as in the discussion following
Eq. (58), we may say that the self-fields in this configuration
do not act as a constant force but rather as a spring opposing
the direction of the wiggler field “spring.” Thus the total
spring constant is smaller and the betatron frequency is
smaller. The different effects of the self-fields on the charac-
ter of the betatron oscillation are likely to affect the FEL
interaction.

B2
+ (Tw(l + cos 22) —N)y=0. (64)

IV. A THICK BEAM APPROXIMATION

We return to the cold fluid model presented in Sec. II
and we look for an approximation scheme that admits of
solutions with thick beams and that is not restricted to the
paraxial approximation. We start from the system (17)-
(20) and we expand in a formal small parameter €. Many
different scalings are possible, and we select one that appears
to generate the most interesting family of solutions. The scal-
ing simulates some of the effects of the paraxial approxima-
tion, but it clearly includes some finite thickness beam ef-
fects. We introduce a formal small parameter € and we
expand in the form

Y=€n+€y;+eys+ -,
¢=€¢1+63'//3+55¢5+"',
p=€p, + ¢+ Eds+ 1,
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E=E_,/e+E\(x)e

+ [E;(Xl) + E] (XI)X3]€3 + -,
F=F\(x))e+ [Fs(x)) + Fi(x)ys1€+ -,

The parameter € measures the magnitude of 1/, the square
root of the density, and the square root of the ratio of trans-
verse to longitudinal momenta. We wish to admit the possi-
bility of axial variation on two distinct distance scales corre-
sponding to the fast variation of the wiggler magnetic field
and to the slow variation on the betatron oscillation wave-
length. We assume that z corresponds to the fast wiggler
scale, and we also introduce a “‘second” z coordinate

& =¢€z, (65)

and we assume Yy, =Y;(16), x3=x3(06), Xs

= xs(»:2,8), etc.; ¢ = $(»,2,5) and ¥ = P(,2,5). We now
expand (17)—(20) order by order. In the process it is con-
venient to expand in the order, first (17), then (19) and
(20), and finally (18). We are particularly interested in so-
lutions that are periodic of period L on the fast (z) distance
scale and we wish also to examine the behavior of solutions
on the slow (£ = €°z) distance scale. It is convenient to in-
troduce the notation

(f0a) = %j fz)dz,

so that ( f) is the average of fon the fast (z) distance scale.
Further, we define

(66)

fwz8) =f— (S, (67)
and

(fy=0.

In the lowest order we find

h2=Xl,y/E——l9 (68)

Ady = X1,y (69)

Ay, =0, (70)
and

XisKsz = — (X107 (B, — x0)- (71)
From (69) we see that

&, =(d,) + ﬁzv (72)
where

(61,) =11 (73)
and

Ag, =0. (74)

Thus &, is a vacuum electrostatic potential, ¥, = ¢, is a
vacuum magnetic flux function, and
XJ,zz = _Xl,y¢l,y/E—l' (75)

Since ¢, has zero average in z we may integrate (75) to ob-
tain y; as a function periodic of period L in z, or

X3 = xs) + X (76)
where
X3z = —Xl,y‘zx,y/E—v an

and (y,) is a function of y and £ only.
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In next order we find
hhE?> | +h3E_(E, + ¢,) —X1,X3, =3R3,
or, with (68),

hE_,+ (E1+¢1)h2=X3,y +5X1,y/E2—1- (78)
Poisson’s equation, (19), becomes

Ady=x3, + 5,1’1,y/E2—1
and

3= ($3) + &5, (79)
where

(#3), =xs) +ix/EL,, (80)

A‘is =)~(3,ya (81)
while (20) becomes

Ay = hy[¢p, — Fi(x)]. (82)

The remaining equation, (18), is
XiyXsz + X%,y (3.2 + X1ee) + 2X 15X (X6 + X322)
~ 2y (X F X1 X + X0y
+ (s + X1.6) %1y
= — hd%,y&l,y - hz{[h4E—1 + hy(E, + ¢1)]X1,y¢1,y
+hE_(($3,X1y + P1yXs,)

- X3l;l,y —2YX15X5y — holy, — F(Xl)]¢l,yXl.y}9
or

oyXszz + Xighe + 21y Xayt: — 2X 1500y + BX 15y

X}y ~ 1 le (E1+¢1)le)
= — AL 3 - - '
E_, Pl e 5 E? E_,
. N
+ X169, +X1,y(¢3.y —Xs+ E;yl
- F,(xy)
N 1;)2(1: _xl.y'ﬁl,yl'}/;_l LA ]], (83)
where
H=X3:+ X1 (84)

We ask first whether there are any solutions of (83)
periodic in 2, that is, solutions with no { dependence. If we
take the average of (83) with respect to z we obtain the con-
dition for the existence of such solutions, namely,

2X1,y (/‘?3,;:1/3,22 > - le.y <23,z/‘,~/3,zy> + ((/?3,2 )2)Xl,yy

= — Z%—’yl [3(‘;31,;:5(3,,;) - —-———<$1JE‘?—13X1""
+%‘:’YT(EL_‘T— (t?hfﬁl,y))]. (85)

If (85) is satisfied then there is a solution of (83) with no
dependence of y;, ys, or ¥s, and which is periodic in z of
period L. With the identities

<i’3,yi"3,zz) = ‘Xl,y(&l,yj?},y)y

(/?3,1/?3,2_;;) =X1y <$1,yi’3,y)/E—l’

X3.2X32) = (1’3551,, Y/E_y,

(551.»5(3) = - (&1,::1”3) = <$I$IJ>X1/E—'1’
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obtained from (74), (77), and integration by parts, we find
easily that (85) reduces to
((&l,ij)/Xl,y,y = (XI/E—I - ({bl;}l,y))/E-—l' (86)

For the external electric and magnetic fields corre-
sponding to

¥, = (ae’” + Be~?)cos z, (87a)
b, = (Le” + pe~>)cos z, (87b)
we obtain easily
¥3=W,/E_))(Ae” —pue™)cos z
and
($15X3)/ X1y = H(A€” — pe=)/E,,
so that
YWE_ =4 2e2y__#2e—2y) + %(azeZy_Bze—zy)’
(88)
and
hy(y) =2(A%Y + p’e™?) + (@%e” +B%~ ).  (89)

Thus the only density profiles that generate flows of the same
periodicity as the applied wiggler fields are given by (89).
These profiles are hollow as the largest densities occur at the
edges of the beam. The function 4,(y) has at most one mini-
mum and A,(y) increases monotonically and exponentially
away from that minimum. The usual case with symmetry in
yoccurs fora == B,/2and A = u = E,_ /2, for which

¥, = B, cosh y cos z,
é, = E, cosh y cos z,
and
h,(») = (B + 1E 2 )cosh 2p.

It is clear that we could carry out this perturbation expan-
sion order by order in € and construct a formal solution peri-
odic in z. We cannot address, however, the much deeper
question of whether or not exact periodic solutions of our
system exist. In any case, we have shown that within the
perturbation expansion we can construct solutions not af-
fected by betatron oscillations.

We also consider one final question in order to gain
some insight as to the nature of the solutions of (83). We
examine the family of solutions in the neighborhood of the
exactly periodic solutions just found. For simplicity we re-
strict ourselves to the case with no externally applied vacu-
um electric field, 551 =0 and F(y,) =0, so that
i3 = &5 = 0. Further, we take the simple solution corre-
sponding to

¥, = B,, cosh y cos z, (90)
for which the periodic solution of (83) is

X¥/E_,=1BZ sinh 2y 91)
and

E* \¥s= —} By, coshysinh ycos 2z (92)
while

h,(») = B2 cosh 2. (93)

We seek solutions near ¥, and ¥s and set
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X1=X1+ 6
Xs=Xs+ 6xs
where we assume Jy, and Jys are small. We find that to
lowest order in Sy, and dys,
ﬁ.y‘sxl.é'c + 2/?1,y5X1,yI’5.a + i}%.y‘sl’izz
= — (X1,7E_1)8y,- (94)

We may solve (94) for 8y as a function periodic of the fast
period provided the average of (94) over the fast period van-
ishes. Thus we require

e + (X1,7E> )8y, =0, 95)
or
8y, = A(y)cos{{[h, ()] Y2/E_\}
+ B(y)sin{¢[h,(»)1V?/E_\}. (96)

The solutions near the exact periodic solution are bounded
and exhibit betatron oscillations of wavenumber in z equal to
€[h,(»)1"*/E_,. Hence the oscillation period is different
on each streamline. Thus even though we may find betatron
oscillations, they do not necessarily signal the failure of the
cold fluid model.

We cannot guarantee that the solutions exhibiting beta-
tron oscillations are uniformly bounded or that no orbit
crossings occur. Neither can we be sure that exact periodic
solutions exist. A direct extension of our analysis would
show that there is a formal expansion that satisfies the equa-
tions to all orders and that is periodic to all orders. We must
leave open the more difficult questions concerning the prop-
erties of exact solutions.

V. SUMMARY

In this paper a general planar relativistic non-neutral
steady cold fluid model was formulated. It was applied to the
study of the equilibrium of a sheet electron beam in a planar
wiggler FEL. The full transverse dependence of the wiggler
field as well as the equilibrium self-fields of the beam were
taken into account. In several cases the self-fields were
shown to have a significant effect on the equilibrium. For a
thick beam we found a particular density profile such that
the wiggler focusing is balanced by the self-fields, and the
betatron oscillations disappear. In the paraxial approxima-
tion we also found a critical density for which there are no
betatron oscillations. If the density is larger than this critical
density the beam oscillates with the betatron frequency but
its thickness does not tend to zero. Here, as a result of the
self-fields, no orbit crossing occurs. Such an equilibrium
could be of interest for FEL applications. The single-particle
equations of motion were examined in the presence of self-
fields and constants of motion were identified. If the equilib-
rium is such that the self-fields do not vary along z, the parti-
cles were shown to execute betatron oscillations with a
reduced frequency because of the self-fields. The effect of
these particle motions on the FEL could be of interest. We
note, in addition, that in the paraxial approximation for both
the cold fluid and the single-particle motion, the parallel
momentum is not constant when self-fields are present.
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